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Abstract. We study a one-dimensional p-d model with a finite bandwidth under the uwtricted 
W-Fock approximation. It can be seen thal charge fluctuations play M important role in the 
system, and the finite bandwidth will not qualitatively change the characteristics of lhe charge 
flucluations. The appearance of the phase s e p d o n  depends on the relative Wenah of the 
nearest-neighbour intersite Coulomb repulsion V N ,  The finite bandwidth tms lhe divergem 
behaviour of .ym into a sharp peak in the curve of xm against e. 

1. Introduction 

After the discovery of copper-oxide superconducting materials, in recent years much effort 
has been expended in the study of the normal state properties and the mechanism of 
superconductivity. One of the most notable features of high-Tc superconducting materials 
is their unusual normal state behaviour, an understanding of which is important in the 
search for the mechanism of superconductivity. It is now generally agreed that strong 
electron-electron correlations play an important role in these materials. A copper-oxide 
superconductor will be an insulator in a half-filled situation due to an energy gap. One of 
the interesting questions here is: what is the nature of the gap for the parent insulator? Multi- 
band models in which both Cu and 0 orbitals are contained have been stressed by many 
authors [l-K]. As suggested by Varma and co-workers [2], the effective copper and oxygen 
levels are close in energy and the nearest-neighbour copper and oxygen Coulomb repulsion 
is comparable with the hybridization energy. This is regarded as one of the key ingredients 
for high-T, superconductivity. It also confirms that the on-site Coulomb repulsion in Cu is 
the largest energy scale in the problem; the materials are charge-transfer insulators in a half- 
filled situation. Many authors have paid attention to the charge fluctuations of the system. 
It has been shown by Littlewood and co-workers 19,101 that, in the weak-coupling limit the 
charge-transfer susceptibility will diverge with the increase of the nearest-neighbour copper 
and oxygen Coulomb repulsion. Using the large-hr expansion method [I 1,121, the phase 
separation of the model is found to occur in the region of the phase diagram surrounding the 
metal-insulator transition. The problem has a!so been studied by numerical diagonalization 
and Monte Carlo simulations [13,14]. Much useful information has resulted from finite- 
size studies. Scalettar and co-workers [131 have researched the qualitative behaviour of 
the spin and charge correlations of the threeband Hubbard model; their results show that 
atbactive interactions exist in both the d-wave and extended s*-wave channels near the 
antiferromagnetic boundary. San0 and Ono [I41 pointed out that in the proximity of the 
phase boundq towards the phase separation, the superconducting correlation is dominant 
compared with the charge density wave (CDW) and spin density wave (SDW) correlations. 
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The system size. is a limit to smallcluster studies, due to the complexity of the structure. 
Recently, Sudbo and co-workers [ 151 have obtained an exact solution of the one-dimensional 
pd model with zero bandwidth by the transfer matrix technique. They showed that the 
phase separation will exist in this system and that there will be a sharp peak in the charge 
transfer susceptibility which responds Lo the charge transfer instability. Their results also 
confirmed that the nearest-neighbour Coulomb repulsion cannot be ignored in this kind of 
strongly correlated electronic system. No exact solution is obtained when the hybridization 
is introduced. 

In order to address this issue, in this work we study a one-dimensional pd model 
with a finite bandwidth. The consideration is that, on the one hand, the hopping integral is 
normally taken as the energy scale in the problem; it plays a role in the theoretical framework 
and cannot be ignored. On the other hand, previous mean-field studies have usually been 
performed with the uniform Hartree-Fock approximation, but the local character of the 
model is ignored under this approximation. To overcome this drawback, we apply the 
unrestricted Hartree-Fock approximation to the model. and the properties of the charge 
fluctuation of the system are obtained. The paper is organized as follows. In section 2 
the formalism and the description of calculations is given. The results and discussion are 
presented in section 3. 

Jie rang and Jue-Lian Shen 

2. The model 

The model Hamiltonian we consider has the following form: 

where di t and pI t are the hole creation operators on Cu site i and 0 site I respectively, and 

ni, = didi,, nlr = pf ,plr .  t The site energy of 0 is E (which is in fact the level difference 
between 0 and Cu, because the site energy of Cu is set to zero and 6 > 0 is assumed in this 
work), t is the Cu-0 hybridization, Ud and Up are the on-site Coulomb repulsion on Cu and 
0 sites respectively, and Vpd is the nearest-neighbour Cu-0 intersite Coulomb interaction. 

In previous studies, most of the mean-field analysis has been performed under the 
uniform Hartree-Fock approximation. However, this approximation is not reasonable when 
the local properties of the system become important and some kind of non-linear excitation 
starts to play an important role in the system. In this case a non-uniform Hartree-Fock 
approximation is a good starting point for the local characteristics of the model. In fact, 
recent works have addressed this aspect [16-181. Following these works, in this paper we 
consider the model Hamiltonian under the unrestricted b e e - F o c k  approximation. Then, 
the many-body terms in (1) can be decoupled: 
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Ryre 1. One-hole wavefunction of the spinless fermion model when one more hole is added 
to the half-filled situation with 6 = 0.1, Vw = 2.0. 

t + { ( E  - P) + uP(n l t )  + 
t t  

vpd((ni4) + ( ~ ~ ~ ) ) J P I ~ I J  
i 

t t .  (46) 

Here the spin-flip process is considered to be small, and then the up and down spin 
Hamiltonian decouples; they will influence each other in a self-consistent way. The term 
Hb is an energy shift: 

f (-t + Vpd(diiPjr))djrPIJ + (-t + Vpd(Pi&))PjrdL+. 

Hb = E [ - [ l a ( n i t ) ( n i $ )  - up(nit)(nl&) - vpd((ni$) + (nit))((nl$) (nit)) 
<I 

(44 

A lot of experimental and theoretical investigation shows that the doping dependence 
of the electronic state is not rigid-band-lie, but rather an intensity transfer from the high- 
energy region to the low-energy region is induced, and the charge excitation gap i s  smaller 
than the uniform Hartree-Fock gap 1161. A non-uniform solution of the Hamiltonian (I)  
would therefore be interesting, and we will show in section 3 that a non-uniform solution 
is more stable than a uniform solution due to a lowering of energy. 

+ Vw(ditPlt)(Pitdit)  t t + V p d ( d i J ~ ~ + ) ( ~ j r d i + ) ] .  t t 
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To illustrate the local character of the unrestricted Hartree-Fock approximation, we 
give here a simple example: the spinless fermion model considered in [16]. Figure 1 is 
an illustration of the one-hole wavefunction of the one-dimensional spinless fermion model 
when one more hole is added to the half-filled case. Clearly, it is a polaron-like solution, and 
the charge distribution of the whole system is highly non-uniform When spin is introduced, 
as in the present model, the ground-state configuration is more complicated, and the hole 
filling is also non-uniform. The details of the ground-state configuration will be discussed 
elsewhere. 

As mention'? above, the properties of the system rely on its gap character. When 
the system is in the charge transfer regime, the band structure for either a uniform or a 
non-uniform solution will be changed with hole doping. In the case of a non-uniform 
solution, there still exists a region where the average total filling (n)  remains constant as the 
chemical potential is moved. The width of the region with (n )  remains constant in terms 
of the chemical potential I.L and is regarded as the charge Wansfer gap in the system [7]. In 
figure 2, we show the gap character as a function of the filling in two regions: the charge 
transfer regime (figure 2(a)) and the Mott-Hubbard regime (figure 2(b)). It is clearly seen 
that in the charge transfer regime, when additional holes are added to the n = 1 system, 
they will go mainly to 0 sites. When the holes decrease from the n = 1 system, they are 
removed largely from the Cu sites. On the other hand, in the Mott-Hubbard regime, the 
occupation of holes on 0 sites is very small and remains almost unchanged when the total 
filling is varied. It is certainly the case that the properties of the system will be strongly 
influenced by the difference. In this work we pay attention mainly to the charge transfer 
regime. 

4.1 4 . l h  " '  - 
0.6 as 1 1 2  1.4 0.6 0.8 1 12 1.4 

Ch&d Potential P add Potential P 

Figure 2. (a) Holc occupation of the Cu and 0 sites against total filling nmt in the charge m s f e r  
regime: ud = 12. f = 2.0. (b) Same as (a), but with ud = 6, E = 8.0 (the Matt-Hubbard 
regime). 

To capture the charge fluctuation character of the model, we define the phase-separation 
susceptibility x p s  and the charge transfer susceptibility x a  as usual [15]: 

a 
as xcr = -(ncu - n d p  =constant. 
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These two quantities determine the possibility of phase separation when the system is doped 
beyond half filling and the response of the system to the transfer of charges between Cu 
and 0 sites respectively. The divergence of xcr will signal the onset of charge transfer 
instability, and the discontinuity in the total filling nfot against the chemical potential p will 
respond to a phase separation. The criterion is based on the following idea: states with 
densities inside the gap will be unstable if a discontinuity in ntOt is observed, i.e. the system 
will evolve into two regions having different densities, one poor in holes with n,, = 1, and 
the other rich in holes with ntot = nb; this is the so-called phase-separated state. 

Having equations (4n) and (4b) in hand, the Hamiltonian can be diagonalized for a finite 
system in a self-consistent way. In fact, the calculation of xp~, or equivalently the curve of 
total filling against chemical potential, is not difficult. The convergence is easy to realize. 
As a comparison, much CPU time is needed to ensure the convergence of xm. One thing 
that should be noted here is that when two or more configurations are obtained the real one 
will have the lowest energy. 
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Figure 3. (a) The total filling niDt = ncu t no against chemical potential p on a 1~ CU-0 
chain with Ud = 100, Up = 0, 6 = 1.0. (i) V, = 1.00 for filled triangles. (ii) V, = 0.125 for 
open biangles. (6) Same as (a), but with Ud = 12, Up = 0, B = 1.0. (i) V, = 0.50 for filled 
triangles. (ii) V, = 0.25 for open triangles. 

3. Results and discussion 

The Hamiltonian is solved for a onedimensional Cu-0 chain with a finite number of sites. 
The number of sites is taken to be 200: this size is adequate and large enough for our 
problem. Periodic boundary conditions are used during the calculation. In the following 
discussion we limit our consideration to two sets of parameters: (i) Ud = 100, U, = 0 
and (ii) u d  = 12, U, = 0, although other Coulomb parameters can be adopted within our 
numerical studies. The value of the on-site Coulomb repulsion on a Cu site considered 
in the first case is large enough to be regarded as infinite. In fact, the larger value of ud 
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Figure 4. Charge-transfer susceptibility XCI against with Ud = 100, U, = 0, n = 1.0. (a) 
V# = 0.25. I = 0.25 for filled triangles; V# = 1.00, I = 1.M) for open uiangles. (b) Same as 
(a), but with V d  = 1.03, I = 0.25. 

will result in only a quantitative change of the characteristic properties of the model; no 
qualitative variation will occur. It will then be easy to compare our results with other works. 

First, we make a numerical comparison of the total energy of non-uniform and uniform 
solutions, as an example. The special case we consider is the situation in which one more 
hole is added to a half-filled system. The energy difference is about 37.7f for the given 
parameters Ud = 12, Up = 0, V, = 1.5 and c = 2.0. The non-uniform configuration 
should then be more stable when the system is doped beyond half filling. 
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The main properties of the charge fluctuation of the system are shown in figures 3 
and 4. In figure 3, the curve of total fiUing against chemical potential is plotted for various 
parametem Here the hopping integral t is taken as the energy scale, and E = 1.0 is assumed 
for all the cases. The result for V, = 1 .M) is denoted by open triangles in figure 3(a). An 
obvious sudden change appears for hole filling nbt when the chemical potential approaches 
a critical value. As discussed in the definition of xps, the phase separation manifests itself 
as a discontinuity in ntOf as a function of p; this figure is a typical illustration showing the 
phase separation character of the system. Compared with the zero-bandwidth results [15], 
the density of the two phases between which the phase separation happens is unchanged, but 
the distribution of charge is altered in a way that decreases the total energy. The result shows 
that if the system is initially prepared with a density between the two plateaux for given 
parameters, it will finally evolve into the phase-separated state: one region with n,.,, = 1, 
where the charge resides on Cu, and 0 sites are empty, and another phase with ntM = 2, 
where the charge resides on 0, and Cu sites are empty. The plot with filled triangles in 
figure 3(n) corresponds to the case with Vpd = 0.125. It is clear that the variation of 
the total filling ntot depends strongly on the value of vpd. When v p d  is small enough, the 
discontinuity in ntof is strongly suppressed and the upper plateau inn,, is almost completely 
washed out; no phase separation will take place. As an illustration, in figure 3(b) a similar 
result is given with U d  = 12, Vpd = 0.50 and 0.25 respectively. It is a situation in which 
the relative values of the parameters are closer to the practical case. It can be seen that 
the larger value of U, prefers phase separation, and only a quantitative change takes place 
compared with the = 100 result. In both cases, the phase separation will occur over a 
wide range of doping 1 < nlOt < 2 for large enough vpd. 

The chargetransfer susceptibility xn against E is shown in figure 4. AI1 the calculations 
are performed under the half-filled situation, n = 1.0. The result for vpd = 0.25 and 
t = 0.25 is given in figure 4(n) (filled triangles). Compared with the results of Subdo and 
co-workers [15], the divergent behaviour of the susceptibility XCT against E is replaced by a 
sharp peak in the curve. The peak responds to charge transfer instability. It can also be seen 
that the value of the peak is sensitive to the magnitude of the bandwidth. With increasing 
bandwidth, the peak broadens. When t = 1 .M) (figure 4(n), open triangles), the peak almost 
disappears, and a smooth curve is obtained instead. Therefore a relatively n m o w  band is 
necessary to ensure the appearance of the charge transfer instability. On the other hand, the 
influence of Vp d  on xcr is relatively small (figure 4(b)). 

In summary, in the present work we have studied a one-dimensional p-d model with a 
finite bandwidth. The Hamiltonian was solved for a finite, but large enough, system under 
the unresbicted Hartree-Fock approximation. The advantage of a non-uniform Hartree-Fock 
approximation is that the local character of the system remains. The system undergoes a 
phase separation and charge transfer instability when a finite bandwidth is introduced. The 
appearance of phase separation depends on the relative strength of the nearest-neighbour 
repulsion vpd. A finite bandwidth makes the divergent behaviour of xcr into a sharp peak in 
the curve of x- against E .  The occurrence of this sharp peak is sensitive to the magnitude 
of the bandwidth: the larger the bandwidth, the broader the peak. 
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